Documentation

PolyaEnumerationTheorem.StirlingFirstKindSum

Sum of Stirling numbers of the first kind #

Using Pólya's enumeration theorem, we prove a formula for the sum of the Stirling numbers of the first kind multiplied by powers of a natural number.

For additional information, refer to https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind.

@[reducible, inline]

The Stirling number of the first kind stirlingFirstKind n i represents the number of permutations of Fin n with exactly i cycles.

Equations
Instances For
    theorem StirlingFirstKindSum.sum_stirlingFirstKind_mul_pow_eq_choose_mul_factorial {n m : } :
    i : Fin (n + 1), StirlingFirstKindSum.stirlingFirstKind n i * (m + 1) ^ i = (n + m).choose m * n.factorial

    Formula for the sum of Stirling numbers of the first kind multiplied by powers of a positive natural number. The sum of (stirlingFirstKind n i) * (m + 1)ⁱ over i ∈ {0, ..., n} is equal to ((n + m).choose m) * n!.

    The sum of (stirlingFirstKind (n + 1) i) * 0ⁱ over i ∈ {0, ..., n + 1} equals 0.

    The sum of (stirlingFirstKind 0 i) * 0ⁱ over i ∈ {0} equals 1.