Sum of Stirling numbers of the first kind #
Using Pólya's enumeration theorem, we prove a formula for the sum of the Stirling numbers of the first kind multiplied by powers of a natural number.
For additional information, refer to https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind.
@[reducible, inline]
The Stirling number of the first kind stirlingFirstKind n i represents the number of permutations of Fin n with exactly i cycles.
Equations
Instances For
Formula for the sum of Stirling numbers of the first kind multiplied by powers of a positive natural number.
The sum of (stirlingFirstKind n i) * (m + 1)ⁱ over i ∈ {0, ..., n} is equal to ((n + m).choose m) * n!.
theorem
StirlingFirstKindSum.sum_stirlingFirstKind_of_zero_mul_zero_pow_eq_one :
∑ i : Fin 1, StirlingFirstKindSum.stirlingFirstKind 0 ↑i * 0 ^ ↑i = 1
The sum of (stirlingFirstKind 0 i) * 0ⁱ over i ∈ {0} equals 1.